人教版六年级下册数学广角解读详细一点,数学广角比较难,偶看不懂,把数学广角分析的清晰点……这个“抽屉问题”主要想告诉我们什么?我看不明白,帮忙用比较俗白简练的话描述一下~

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 09:50:31
人教版六年级下册数学广角解读详细一点,数学广角比较难,偶看不懂,把数学广角分析的清晰点……这个“抽屉问题”主要想告诉我们什么?我看不明白,帮忙用比较俗白简练的话描述一下~

人教版六年级下册数学广角解读详细一点,数学广角比较难,偶看不懂,把数学广角分析的清晰点……这个“抽屉问题”主要想告诉我们什么?我看不明白,帮忙用比较俗白简练的话描述一下~
人教版六年级下册数学广角解读
详细一点,数学广角比较难,偶看不懂,把数学广角分析的清晰点……
这个“抽屉问题”主要想告诉我们什么?我看不明白,帮忙用比较俗白简练的话描述一下~

人教版六年级下册数学广角解读详细一点,数学广角比较难,偶看不懂,把数学广角分析的清晰点……这个“抽屉问题”主要想告诉我们什么?我看不明白,帮忙用比较俗白简练的话描述一下~
.例1.

编写意图
教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉问题”.学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望.在这里,“4枝铅笔”就是“4个要分放的物体”,“3个文具盒”就是“3个抽屉”,这个问题用“抽屉问题”的语言来描述就是:把4个物体放进3个抽屉,总有一个抽屉至少有2个物体.

为了解释这一现象,教材呈现了两种思考方法.第一种方法是用操作的方法进行枚举.通过直观地摆铅笔,发现把4枝铅笔分配到3个文具盒中一共只有四种情况(在这里,只考虑存在性问题,即把4枝铅笔不管放进哪个文具盒,都视为同一种情况).在每一种情况中,都一定有一个文具盒中至少有2枝铅笔.通过罗列实验的所有结果,就可以解释前面提出的疑问.实际上,从数的分解的角度来说,这种方法相当于把4分解成三个数,共有四种情况,即(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的.第二种方法采用的是“反证法”或“假设法”的思路,即假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔.还剩下1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了.这种方法比第一种方法更为抽象,更具一般性.例如,如果要回答“为什么把(n +1)枝铅笔放进 n个文具盒,总有一个文具盒里至少放进2枝铅笔”的问题,用枚举的方法就很难解释,但用“假设法”来说明就很容易了.

为了对这类“抽屉问题”有更深的理解,教材在“做一做”中安排了一个“鸽巢问题”.学生可以利用例题中的方法迁移类推,加以解释.


教学建议

由于例题中的数据较小,为学生自主探索提供了很大的空间.因此,教学时,可以放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流.除了教材上提供的两种方法以外,还会有其他的方法(如数的分解法),只要是合理的,都应给予鼓励.在此过程中,教师也应给予适当的指导.例如,要使学生明确,这里只需解决存在性问题就可以了.如果有的同学在枚举的时候,给三个文具盒标上序号,把(4,0,0)、(0,4,0)和(0,0,4)理解成三种不同的情况,教师应指出,在研究这一类问题时,作这样的区分是没有必要的.这样的指导有助于培养学生具体情况具体分析的数学思维.

教学时应有意识地让学生理解“抽屉问题”的“一般化模型”.教学时,在学生自主探索的基础上,可以引导他们对教材上提供的两种方法进行比较,思考一下枚举的方法有什么优越性和局限性,假设的方法有什么优点,使学生逐步学会运用一般性的数学方法来思考问题.学生在解决了“4枝铅笔放进3个文具盒”的问题以后,可以让学生继续思考:把5枝铅笔放进4个文具盒,总有一个文具盒里至少放进2枝铅笔,为什么?如果把6枝铅笔放进5个文具盒,结果是否一样呢?把7枝铅笔放进6个文具盒呢?把10枝铅笔放进9个文具盒呢?把100枝铅笔放进99个文具盒呢?引导学生得出一般性的结论:只要放的铅笔数比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔.接着,可以继续提问:如果要放的铅笔数比文具盒的数量多2,多3,多4呢?引导学生发现:只要铅笔数比文具盒的数量多,这个结论都是成立的.通过这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维.

2.例2.

编写意图

本例介绍了另一种类型的“抽屉问题”,即“把多于 kn个的物体任意分放进n 个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体.”实际上,如果设定 k=1,这类“抽屉问题”就变成了例1的形式.因此,这两类“抽屉问题”在本质上是一致的,例1只是例2的一个特例.
教材提供了让学生把5本书放进2个抽屉的情境,在操作的过程中,学生发现不管怎么放,总有一个抽屉至少放进3本书,从而产生探究原因的愿望.学生仍然可以采用枚举的方法,把5分解成两个数,有(5,0),(4,1),(3,2)三种情况.在任何一种结果中,总有一个数不小于3.更具一般性的仍然是假设的方法,即先把5本书“平均分成2份”.利用有余数除法5÷2=2……1可以发现,如果每个抽屉放进2本,还剩1本.把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了.

研究了“把5本书放进2个抽屉”的问题后,教材又进一步提出“如果一共有7本书,9本书,情况会怎样?”的问题,让学生利用前面的方法进行类推,得出“7本书放进2个抽屉,总有一个抽屉至少放进4本书,9本书放进2个抽屉,总有一个抽屉至少放进5本书”的结论.

在此基础上,让学生观察这几个“抽屉问题”的特点,寻找规律,使学生对这一类“抽屉原理”达到一般性的理解.例如,学生可以通过观察,归纳出“要把a (a是奇数)本书放进2个抽屉,如果 a÷2=b ……1,那么总有一个抽屉至少有(b+1)本书”的一般性结论.
教材第71页的“做一做”延续了第70页“做一做”的情境,在例2的基础上有所扩展,把 “抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推.

教学建议

教学例2时,仍应鼓励学生用多样化的方法解决问题,自行总结“抽屉原理”.例如,在解决“5本书放2个抽屉”的问题时,由于数据较小,学生用动手操作或分解数的方法仍有其直观、简单的特点,这也是学生最容易想到的方法.但由于枚举的方法毕竟受到数据大小的限制,随着书的本数的增多,教师应该进行适当的引导.例如,可以提问学生“125本书放进2个抽屉呢?”由于数据很大,用枚举法解决就相当繁琐了,就可以促使学生自觉采用更一般的方法,即假设法.假设法最核心的思路就是把书尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本.这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握.

当学生利用有余数除法解决了本例中的三个具体问题后,教师应引导学生总结归纳这一类“抽屉问题”的一般规律,要把某一数量(奇数)的书放进2个抽屉,只要用这个数除以2,总有一个抽屉至少放进数量比商多1的书.例如,要把125本书放进2个抽屉,125÷2=62……1,因此,总有一个抽屉至少放进63本书.如果进一步一般化的话,就是:要把 a个物体放进n个抽屉,如果a÷n=b……c(c≠0),那么一定有一个抽屉至少可以放(b+1)个物体.这一结论与前文提到的“把多于kn 个物体任意分放进 n个空抽屉(k 是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体”意思是完全一致的.

学生完成“做一做”时,可以仿照例2,利用8÷3=2……2,可知总有一个鸽舍里至少有3只鸽子.

需要注意的是,例2中“某个抽屉至少有的书的本数”是除法算式中的商加“1”,而例2中除法算式的余数也正好是1,很容易让学生错误地理解成是商加“余数”,并迁移到“做一做”,想成至少有“2(商)+2(余数)”,把结论变成“至少有4只鸽子要飞进同一个鸽舍里”.事实上,只要学生从本质上理解“抽屉原理”的推理过程,就能克服这种错误理解.

3.例3.
编写意图

本例是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子.要从4个红球和4个蓝球中摸出2个同色的球,问最少需要摸出几个球.要解决这个问题,可以联想到前两个例题中的“抽屉问题”.因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一抽屉”.这样,就可以把“摸球问题”转化成“抽屉问题”.假设最少要摸出a 个球, a÷2=1……b ,当b =1时, a就是最小的,此时 a=3.即至少要摸出3个球,才能保证有两个球是同色的.

教材通过三个学生的对话,指出了学生可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时有可能会遇到的一些困难.例如,本例中的“4个红球和4个蓝球”很容易给学生造成干扰.

接下来,教材引导学生把这个结论进一步推广,指出“只要摸出的球比它们的颜色种数多1,就能保证有两个球同色.”例如,球的颜色有三种,至少要摸出四个球,才能保证摸出的球里有两个同色.教材第72页的“做一做”中第2题描述的就是这种情形.
“做一做”第1题也是“抽屉原理”的典型例子.其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同.

教学建议

教学例3时,要先引导学生思考本例的问题与前面所讲的抽屉原理是否有联系,有什么样的联系,应该把什么看成抽屉,要分放的东西是什么.但学生在思考这些问题的时候,一开始可能会缺乏思考的方向,很难找到切入点.此时,可以让学生先自由猜测,再验证.例如,有的学生会猜测“只摸2个球能否保证这2个球同色”,只要举出一个反例就可以推翻这种猜测,如这两个球正好是一红一蓝时就不能满足条件.再如,由于受到题目中“4个红球和4个蓝球”这个条件的干扰,许多学生会猜测要摸的球数只要比其中一种颜色的个数多1就可以了,即“至少要摸出5个球才能保证一定有2个是同色的”.为了验证这个猜测,学生会自觉地把“摸球问题”与“抽屉问题”联系起来,把两种颜色看成两个抽屉.根据5÷2=2……1,可以知道,摸出5个球时至少有3个球同色.因此,摸出5个球是没有必要的.

在学生猜测、验证的基础上,逐步引导学生把具体问题转化为“抽屉问题”,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理.例如,在本例中,根据例1中的结论“只要分的物体个数比抽屉数多,就能保证一定有一个抽屉至少有2个球”就能推断“要保证有一个抽屉至少有2个球,分的物体个数至少比抽屉数多1”.现在,“抽屉数”就是“颜色数”,结论就变成了:“要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1.”因此,要从两种颜色的球中保证摸出两个同色的,最少要摸出3个球.应用此结论,就可以直接解决“做一做”第2题的问题.

在教学的过程中,在实际问题和“抽屉问题”之间架起一座桥梁并不是一件非常容易的事.如果学生在理解时存在比较大的困难时,也可以引导他们这样思考:球的颜色一共有两种,如果只取两个球,会出现三种情况:两个红球、一个红球一个蓝球、两个蓝球.如果再取一个球,不管是红球还是蓝球,都能保证三个球中一定有两个同色的.

完成第72页的“做一做”第1题时,要引导学生把“生日问题”转化成“抽屉问题”.因为一年中最多有366天,如果把这366天看作366个抽屉,把370个学生放进366个抽屉,人数大于抽屉数,因此总有一个抽屉里至少有两个人,即他们的生日是同一天.而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,49÷12=4……1,因此,总有一个抽屉里至少有5(即4+1)个人,也就是他们的生日在同一个月.

4.关于练习十二中一些习题的说明和教学建议.

第1题,可以让学生先用扑克牌操作一下,看看实验结果是否和题目所描述的一致,再对其中的原因加以思考.我们可以用抽屉原理来解释这一现象:一副扑克牌共54张,去掉2张王牌,只剩下方块、红桃、梅花、黑桃四种花色.我们把4种花色当作4个抽屉,把5张扑克牌放进4个抽屉中,必有一个抽屉至少有2张扑克牌,即至少有2张是同花色的.

第2题,相当于把41环分到5个抽屉(代表5镖)中,根据41÷5=8……1,必有一个抽屉至少有9(即8+1)环.

第3题中的第一个问题与例3的类型相同,只要想一共有3种颜色,至少拿出4根小棒就能保证一定有2根同色的小棒.

第4题,把两种颜色当作两个抽屉,把正方体6个面当作物体,要把6个面分配给两个抽屉,6÷2=3,至少有3个面要涂上相同的颜色.

抽屉原理的题目,首先要建立数学模型,然后用物体数除以抽屉数,只要有余数就是商加一。

抽屉问题
抽屉原则,又叫狄利克雷原则,原则一:把多于n个的元素,按任一确定的方式分成n个集合,那么一定至少有一个集合中,含有至少两个元素。原则二:把多于m×n个元素放入n个抽屉中,那么,一定有一个抽屉里有m+1个或者m+1个以上的元素。抽屉原则是证明符合某种条件的对象存在性问题有力工具。应用抽屉原则解决问题的关键是如何构造抽屉。
例1:在一个大口袋中装着红、黄、绿三种玻璃球各有...

全部展开

抽屉问题
抽屉原则,又叫狄利克雷原则,原则一:把多于n个的元素,按任一确定的方式分成n个集合,那么一定至少有一个集合中,含有至少两个元素。原则二:把多于m×n个元素放入n个抽屉中,那么,一定有一个抽屉里有m+1个或者m+1个以上的元素。抽屉原则是证明符合某种条件的对象存在性问题有力工具。应用抽屉原则解决问题的关键是如何构造抽屉。
例1:在一个大口袋中装着红、黄、绿三种玻璃球各有很多个。如果每次随意拿3个球,拿11次,至少有两次玻璃球颜色状况完全相同,请说明理由。
分析:所谓两次玻璃球颜色状况完全相同,是指如果有一次拿的是1黄2绿,另一次也拿的是1黄2绿,它们的颜色状况就是完全相同。怎么说明呢?这就需要造抽屉,用抽屉原则来说明。随意拿出3个球,会有不同的状况,我们把它找全,每一种颜色状况就是一个抽屉,有多少种不同的颜色状况,就有多少个抽屉。
每次拿3个球,有10种不同的颜色状况,把这10种不同的颜色状况看成10个抽屉,拿的11次看成11个物体,根据抽屉原则一,把11个物体放入10个抽屉中,一定有两个或两个以上的物体。也就是说拿11次,一定至少有两次玻璃球的颜色状况完全相同。
例2:求证1997年1月出生的任意32个孩子中,至少有两个人是同一天出生的。
分析:1997年1月份共31天,为了回答上述问题,我们不妨假设1月份这31天为31个抽屉,而将1月份出生的任意32个孩子看作32个元素。根据抽屉原理一知,有一只抽屉里至少放入了两个元素。
答:1月份出生的任意32个孩子中,至少有两个人是同一天出生的。
练习:
1、求证:任意互异的8个整数中,一定存在6个整数x1、x2、x3、x4、x5、x6使得(x1-x2)·(x3-x4)·(x5-x6)恰是105的倍数。
分析:由于105=3×5×7,而3、5、7两两互质,所以只要能找到两个数,比如x1、x2,使得x1-x2是7的倍数,同理x3-x4是5的倍数,x5-x6是3的倍数,题目即得证。
根据抽屉原理一,在所给的任意8个整数中,必有两个整数被7除的余数相同,不妨设这两个数为x1、x2,则有7|(x1-x2),或表示为:x1-x2=7k1(其中k1为不等于零的整数)。在余下的6个数中,必有两个数被5除的余数相同,不妨设这两个数为x3、x4,使得x3、x4满足:x3-x4=5k2(k2为非零整数)。在余下的4个数中,必有两个整数被3除所得余数相同,不妨设这两个数为x5、x6,使得x5-x6=3k3(k3为非零整数)。
(x1-x2)·(x3-x4)·(x5-x6)
=7k1·5k2·3k3
=105×整数
即:从任意给定的互异的8个整数中,一定可以找到6个数x1、x2、x3、x4、x5、x6使得(x1-x2)·(x3-x4)·(x5-x6)是105的倍数。
2、一个袋里有四种不同颜色的小球,每次摸出两个,要保证有10次所摸的结果是一样的,至少要摸多少次?
分析:当摸出的两个球的颜色相同时,可以有四种不同的结果。当摸出的两个球的颜色不同时,最多可以有3+2+1种不同的结果。将上述10种不同的结果作为10个抽屉。
要求10次摸出的结果相同,依抽屉原理二,至少要摸9×10+1=91(次)。
3、 一个圆上有40条直径,在每条直径两端各填上一个数,所填数字可以从1到20中任意选。一定存在两条直径,两端点数字之和相等。
分析:我们做抽屉的方向一定是当每条直径的两端从1到20中任选数字填在上面时,会有多少种不同的和。把这些不同的和分别作为抽屉。再去与直径的条数做比较,就可以得出结论。
直径两端和最小的是2,最大的是40。因此,共有39种不同的和,把39种不同的和看成39个抽屉,直径的条数是40,大于39,所以一定存在着两条直径,两端数字之和相等。
4、能否在8行8列的方格表的每一个空格中分别填上1、2、3这三个数字中的任意一个,使得每一行、每一列及对角线AC、BD上的各个数字的和各不相同?对你的结论加以说明。
分析与8行8列及两条对角线,共有18条“线”,每条“线”上都填有8个数字,要使各条“线”上的数字和均不相同,那么各条“线”上的数字和的取值情况应不少于18种。下面我们来分析一下各条“线”上取不同和的情况有多少种。如果某一条“线”上的8个数字都填上最小的数1,则可得到数字和的最小值8;如果某一条“线”上的8个空格中都填上最大的数3,那么可得到数字和的最大值24。由于数字及数字和均为整数,所以从8到24共有17种不同的值。我们将数字和的17种不同的值看作17个抽屉,而将18条“线”看作18个元素。根据抽屉原理一,将18个元素放入17个抽屉中,一定有一只抽屉中放入了至少两个元素。即18条“线”上的数字和至少有两个相同,所以不可能使18条“线”上的各数字和互不相同。
5、由6个队参加的单循环比赛(每两个队都要比赛一场),无论比赛进行到什么时候,一定存在两个队,这两个队比赛过的场次数相同。
分析:无论比赛进行到什么时候,所有比赛过的比赛过的场次从0场到5场都有可能出现。因此,就会有5个不同的抽屉。
参赛的队有6个,有5个抽屉,根据抽屉原则一,无论比

收起

.例1。

编写意图
教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉问题”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。在这里,“4枝铅笔”就是“4个要分放的物体”,“3个文具盒”就是“3个抽屉”,这个问题用“抽屉问题”的语言来描述就是:把4个物体放进3个抽屉,总有一个抽屉...

全部展开

.例1。

编写意图
教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉问题”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。在这里,“4枝铅笔”就是“4个要分放的物体”,“3个文具盒”就是“3个抽屉”,这个问题用“抽屉问题”的语言来描述就是:把4个物体放进3个抽屉,总有一个抽屉至少有2个物体。

为了解释这一现象,教材呈现了两种思考方法。第一种方法是用操作的方法进行枚举。通过直观地摆铅笔,发现把4枝铅笔分配到3个文具盒中一共只有四种情况(在这里,只考虑存在性问题,即把4枝铅笔不管放进哪个文具盒,都视为同一种情况)。在每一种情况中,都一定有一个文具盒中至少有2枝铅笔。通过罗列实验的所有结果,就可以解释前面提出的疑问。实际上,从数的分解的角度来说,这种方法相当于把4分解成三个数,共有四种情况,即(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。第二种方法采用的是“反证法”或“假设法”的思路,即假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。还剩下1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了。这种方法比第一种方法更为抽象,更具一般性。例如,如果要回答“为什么把(n +1)枝铅笔放进 n个文具盒,总有一个文具盒里至少放进2枝铅笔”的问题,用枚举的方法就很难解释,但用“假设法”来说明就很容易了。

为了对这类“抽屉问题”有更深的理解,教材在“做一做”中安排了一个“鸽巢问题”。学生可以利用例题中的方法迁移类推,加以解释。


教学建议

由于例题中的数据较小,为学生自主探索提供了很大的空间。因此,教学时,可以放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流。除了教材上提供的两种方法以外,还会有其他的方法(如数的分解法),只要是合理的,都应给予鼓励。在此过程中,教师也应给予适当的指导。例如,要使学生明确,这里只需解决存在性问题就可以了。如果有的同学在枚举的时候,给三个文具盒标上序号,把(4,0,0)、(0,4,0)和(0,0,4)理解成三种不同的情况,教师应指出,在研究这一类问题时,作这样的区分是没有必要的。这样的指导有助于培养学生具体情况具体分析的数学思维。

教学时应有意识地让学生理解“抽屉问题”的“一般化模型”。教学时,在学生自主探索的基础上,可以引导他们对教材上提供的两种方法进行比较,思考一下枚举的方法有什么优越性和局限性,假设的方法有什么优点,使学生逐步学会运用一般性的数学方法来思考问题。学生在解决了“4枝铅笔放进3个文具盒”的问题以后,可以让学生继续思考:把5枝铅笔放进4个文具盒,总有一个文具盒里至少放进2枝铅笔,为什么?如果把6枝铅笔放进5个文具盒,结果是否一样呢?把7枝铅笔放进6个文具盒呢?把10枝铅笔放进9个文具盒呢?把100枝铅笔放进99个文具盒呢?引导学生得出一般性的结论:只要放的铅笔数比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。接着,可以继续提问:如果要放的铅笔数比文具盒的数量多2,多3,多4呢?引导学生发现:只要铅笔数比文具盒的数量多,这个结论都是成立的。通过这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。

2.例2。

编写意图

本例介绍了另一种类型的“抽屉问题”,即“把多于 kn个的物体任意分放进n 个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。”实际上,如果设定 k=1,这类“抽屉问题”就变成了例1的形式。因此,这两类“抽屉问题”在本质上是一致的,例1只是例2的一个特例。
教材提供了让学生把5本书放进2个抽屉的情境,在操作的过程中,学生发现不管怎么放,总有一个抽屉至少放进3本书,从而产生探究原因的愿望。学生仍然可以采用枚举的方法,把5分解成两个数,有(5,0),(4,1),(3,2)三种情况。在任何一种结果中,总有一个数不小于3。更具一般性的仍然是假设的方法,即先把5本书“平均分成2份”。利用有余数除法5÷2=2……1可以发现,如果每个抽屉放进2本,还剩1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

研究了“把5本书放进2个抽屉”的问题后,教材又进一步提出“如果一共有7本书,9本书,情况会怎样?”的问题,让学生利用前面的方法进行类推,得出“7本书放进2个抽屉,总有一个抽屉至少放进4本书,9本书放进2个抽屉,总有一个抽屉至少放进5本书”的结论。

在此基础上,让学生观察这几个“抽屉问题”的特点,寻找规律,使学生对这一类“抽屉原理”达到一般性的理解。例如,学生可以通过观察,归纳出“要把a (a是奇数)本书放进2个抽屉,如果 a÷2=b ……1,那么总有一个抽屉至少有(b+1)本书”的一般性结论。
教材第71页的“做一做”延续了第70页“做一做”的情境,在例2的基础上有所扩展,把 “抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。

教学建议

教学例2时,仍应鼓励学生用多样化的方法解决问题,自行总结“抽屉原理”。例如,在解决“5本书放2个抽屉”的问题时,由于数据较小,学生用动手操作或分解数的方法仍有其直观、简单的特点,这也是学生最容易想到的方法。但由于枚举的方法毕竟受到数据大小的限制,随着书的本数的增多,教师应该进行适当的引导。例如,可以提问学生“125本书放进2个抽屉呢?”由于数据很大,用枚举法解决就相当繁琐了,就可以促使学生自觉采用更一般的方法,即假设法。假设法最核心的思路就是把书尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。

当学生利用有余数除法解决了本例中的三个具体问题后,教师应引导学生总结归纳这一类“抽屉问题”的一般规律,要把某一数量(奇数)的书放进2个抽屉,只要用这个数除以2,总有一个抽屉至少放进数量比商多1的书。例如,要把125本书放进2个抽屉,125÷2=62……1,因此,总有一个抽屉至少放进63本书。如果进一步一般化的话,就是:要把 a个物体放进n个抽屉,如果a÷n=b……c(c≠0),那么一定有一个抽屉至少可以放(b+1)个物体。这一结论与前文提到的“把多于kn 个物体任意分放进 n个空抽屉(k 是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体”意思是完全一致的。

学生完成“做一做”时,可以仿照例2,利用8÷3=2……2,可知总有一个鸽舍里至少有3只鸽子。

需要注意的是,例2中“某个抽屉至少有的书的本数”是除法算式中的商加“1”,而例2中除法算式的余数也正好是1,很容易让学生错误地理解成是商加“余数”,并迁移到“做一做”,想成至少有“2(商)+2(余数)”,把结论变成“至少有4只鸽子要飞进同一个鸽舍里”。事实上,只要学生从本质上理解“抽屉原理”的推理过程,就能克服这种错误理解。

3.例3。
编写意图

本例是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。要从4个红球和4个蓝球中摸出2个同色的球,问最少需要摸出几个球。要解决这个问题,可以联想到前两个例题中的“抽屉问题”。因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一抽屉”。这样,就可以把“摸球问题”转化成“抽屉问题”。假设最少要摸出a 个球, a÷2=1……b ,当b =1时, a就是最小的,此时 a=3。即至少要摸出3个球,才能保证有两个球是同色的。

教材通过三个学生的对话,指出了学生可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时有可能会遇到的一些困难。例如,本例中的“4个红球和4个蓝球”很容易给学生造成干扰。

接下来,教材引导学生把这个结论进一步推广,指出“只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。”例如,球的颜色有三种,至少要摸出四个球,才能保证摸出的球里有两个同色。教材第72页的“做一做”中第2题描述的就是这种情形。
“做一做”第1题也是“抽屉原理”的典型例子。其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同。

教学建议

教学例3时,要先引导学生思考本例的问题与前面所讲的抽屉原理是否有联系,有什么样的联系,应该把什么看成抽屉,要分放的东西是什么。但学生在思考这些问题的时候,一开始可能会缺乏思考的方向,很难找到切入点。此时,可以让学生先自由猜测,再验证。例如,有的学生会猜测“只摸2个球能否保证这2个球同色”,只要举出一个反例就可以推翻这种猜测,如这两个球正好是一红一蓝时就不能满足条件。再如,由于受到题目中“4个红球和4个蓝球”这个条件的干扰,许多学生会猜测要摸的球数只要比其中一种颜色的个数多1就可以了,即“至少要摸出5个球才能保证一定有2个是同色的”。为了验证这个猜测,学生会自觉地把“摸球问题”与“抽屉问题”联系起来,把两种颜色看成两个抽屉。根据5÷2=2……1,可以知道,摸出5个球时至少有3个球同色。因此,摸出5个球是没有必要的。

在学生猜测、验证的基础上,逐步引导学生把具体问题转化为“抽屉问题”,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。例如,在本例中,根据例1中的结论“只要分的物体个数比抽屉数多,就能保证一定有一个抽屉至少有2个球”就能推断“要保证有一个抽屉至少有2个球,分的物体个数至少比抽屉数多1”。现在,“抽屉数”就是“颜色数”,结论就变成了:“要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1。”因此,要从两种颜色的球中保证摸出两个同色的,最少要摸出3个球。应用此结论,就可以直接解决“做一做”第2题的问题。

在教学的过程中,在实际问题和“抽屉问题”之间架起一座桥梁并不是一件非常容易的事。如果学生在理解时存在比较大的困难时,也可以引导他们这样思考:球的颜色一共有两种,如果只取两个球,会出现三种情况:两个红球、一个红球一个蓝球、两个蓝球。如果再取一个球,不管是红球还是蓝球,都能保证三个球中一定有两个同色的。

完成第72页的“做一做”第1题时,要引导学生把“生日问题”转化成“抽屉问题”。因为一年中最多有366天,如果把这366天看作366个抽屉,把370个学生放进366个抽屉,人数大于抽屉数,因此总有一个抽屉里至少有两个人,即他们的生日是同一天。而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,49÷12=4……1,因此,总有一个抽屉里至少有5(即4+1)个人,也就是他们的生日在同一个月。

4.关于练习十二中一些习题的说明和教学建议。

第1题,可以让学生先用扑克牌操作一下,看看实验结果是否和题目所描述的一致,再对其中的原因加以思考。我们可以用抽屉原理来解释这一现象:一副扑克牌共54张,去掉2张王牌,只剩下方块、红桃、梅花、黑桃四种花色。我们把4种花色当作4个抽屉,把5张扑克牌放进4个抽屉中,必有一个抽屉至少有2张扑克牌,即至少有2张是同花色的。

第2题,相当于把41环分到5个抽屉(代表5镖)中,根据41÷5=8……1,必有一个抽屉至少有9(即8+1)环。

第3题中的第一个问题与例3的类型相同,只要想一共有3种颜色,至少拿出4根小棒就能保证一定有2根同色的小棒。

第4题,把两种颜色当作两个抽屉,把正方体6个面当作物体,要把6个面分配给两个抽屉,6÷2=3,至少有3个面要涂上相同的颜色。
希望对你有用!

收起